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Dear Editor,

Enterovirus 71 (EV71) belongs to the genus Enterovirus, family
Picornaviridae (Oberste et al., 1999). It was first isolated from patients
with central nervous system diseases in California between 1969 and
1974 (Schmidt et al., 1974) and has spread worldwide (Solomon et al.,
2010). EV71 infection usually causes mild, self-limiting hand, foot, and
mouth disease in children. Acute EV71 infection may also cause severe
polio-like neurological diseases and significant mortality. The spectrum
of EV71-associated neurological diseases includes aseptic meningitis,
brainstem and/or cerebellar encephalitis, acute flaccid paralysis (AFP),
myocarditis, and rapid fatal pulmonary edema and hemorrhage
(McMinn, 2002).

Like all other viruses, the replication of picornaviruses depends on
hijacking the host cellular translation machinery and recruiting help
from host cell proteins. Numerous host cellular machineries, including
host translation and transcription machineries, have been reported to be
affected by picornaviral infections (Clark et al., 1993; Etchison et al.,
1982; Rose et al., 1978). Two picornaviral proteases, 2A and 3C, are
responsible for the inhibitory effects. The viral protease 3C has been
extensively studied and found to specifically cleave at Gln/Gly scissile
pairs (Kitamura et al., 1981). The major catalytic sites of EV71 3C are
His40, Glu71, and Cys147 (Matthewa et al., 1994; Shih et al., 2004).
Picornaviral 3C can enter nuclei through its precursor 3CD’ or 3CD,
which contains a nuclear localization sequence (NLS) (Amineva et al.,
2004; Sharma et al., 2004), and can cleave several host transcription
factors, such as TATA-box binding proteins, p53, CstF-64, and tran-
scription factor IIIC (Clark et al. 1991, 1993; Weidman et al., 2001; Weng
et al., 2009), thus regulating viral replication within hosts.

Histone proteins are essential components of chromatin in eukary-
otes. Histones assemble as octamers that are wrapped by DNA every
~147 base pairs constituting the repeating unit known as the nucleo-
some. Post-translational modifications (PTMs) on histone tails directly
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affect chromatin structure, which modulates gene expression, DNA
replication, DNA repair and cell duplication (Huang H et al., 2014;
Kouzarides T et al., 2007). Modifications, including acetylation,
methylation, and phosphorylation, commonly occur on N-terminal his-
tone tails and have important implications for the transcription, repli-
cation, and repair of nuclear DNA (Bhaumik SR et al., 2007). Recent
studies have shown that histone covalent modification patterns change
significantly upon viral infection. The genome of many DNA viruses are
associate with core histone proteins to form chromatin-like structures in
the nucleus, such as adenovirus, herpex simplex virus, human cytomeg-
alovirus, Epstein-Barr virus (EBV) and human immunodeficiency virus
(Horwitz et al., 2008; O'Connor et al., 2014; Placek et al., 2009; Murata T
et al., 2012; Britton et al., 2014). The viral chromatin is subject to histone
modifications, which has significant impact on viral gene expression and
virus replication (Lieberman PM. 2006). For example, H3K9me2/3,
H3K27me3, and H4K20me3 are highly enriched in the promoter of EBV
transcription activator BZLF1 to silence its transcription and prevent EBV
reactivation. Meanwhile, some viral pathogens can regulate host gene
expression by altering host histone modifications and chromatin struc-
ture to survive and propagate in host cells (Han et al., 2012; Genin et al.,
2012; Fonseca et al., 2012). For example, HIV has been reported to
stimulate TLR8-dependent TNFα production through increasing H4
acetylation and H3K4me3 with concomitant loss of H3K27me3 at the
TNFα promoter, which eventually activates systemic innate immune re-
sponses (Han et al., 2012).

Despite a wealth of emerging data describing the changing patterns of
epigenetic signatures during infection by DNA viruses and some retro-
viruses, little is known about epigenetic changes that occur during RNA
virus infections. Most RNA virus replication occurs in the cytoplasm of
the host cell, and whether RNA virus infection can cause changes in
histone modifications or chromatin structure has not been well docu-
mented. To gain an insight into the chromatin alterations that occur
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during RNA virus infection, we tried to elucidate the structural and
chemical changes on host cell histone proteins H3 and H4 PTMs brought
by EV71 infection and the possible underlying epigenetic regulatory
mechanism.

In this study, human rhabdomyosarcoma cells (RD) was infected with
wild-type EV71 at a multiplicity of infection (MOI) of 0.05–2 and cells
were harvested at 24 h post infection (h.p.i.). We used immunoblotting to
probe whole-cell extracts with various histone antibodies for H3, H3 C
terminal, acetylated lysines on histones H3K18, dimethylation at H3K4
and H3K14, trimethylation at H3K27 and H4 (Chinnadurai, 2002). When
probing with a specific histone H3 antibody, we observed a faster
running species of H3 (Fig. 1A). It was also observed when probing im-
munoblots in samples taken at time points from 3 to 36 h post virus
infection, and the levels of the band markedly increased with the infec-
tion time (Fig. 1B). No evidence of changes in H4 levels was detected.
Notably, this faster migrating H3 species band was observed using an H3
general antibody generated against the C terminus of histone H3, but not
when using the H3K4me2 antibody specific for PTMs at the N-terminus
of the H3 tail (Fig. 1C). To narrow down the cleavage site region of the
H3 tail, we purified histone samples from virus-infected cells and used a
combination of histone H3 PTM-specific antibodies to probe K4, K14,
K18 and K27 sites at the N terminal of H3 histone (Guo et al., 2018).
Because the H3K27me3 antibody detects a faster migrating band that is
not detectable using the H3K4me2, H3K14me2, and H3K18ac anti-
bodies, the cleavage site most likely lies at or within the K18–K27 region
(Fig. 1D). Collectively, the results of these experiments suggest that the
N-terminal tail of H3 is specifically cleaved during EV71 infection.

Further, we investigated which protease was responsible for H3 tail
cleavage during EV71 infection. EV71 encodes two viral proteases, 2A
and 3C, which are important for viral polypeptide processing. Picorna-
viral 3C can enter nuclei through its precursor 3CD, which contains a
nuclear localization sequence (NLS) (Amineva et al., 2004), and can
cleave some cellular transcriptional factors or regulators in the nucleus.
We speculated that the N-terminal cleavage of histone H3 was likely
mediated by the protease 3C encoded by EV71. First, we verified whether
3C could enter the nucleus during viral infection. Using nuclear and
cytoplasmic fractions isolated from EV71-infected RD cells, we demon-
strated that 3C could be detected in the nuclear fraction as early as 12
h.p.i. (Fig. 1E). Notably, the time periods and level of 3C in the nucleus
were consistent with the clipped form of histone H3 (Fig. 1B). We also
examined the distribution of 3C in the RD cells with an immunofluo-
rescence assay (IFA) using confocal microscopy (Fig. 1F). The images
revealed that EV71 3C was localized primarily in the cytoplasm at 6 h
h.p.i.; then, 3C partially entered the nucleus at the late stage, from 24 to
36 h.p.i., which were consistent with the Western blot data (Fig. 1E).
Fig. 1. The Enterovirus 71 (EV71) 3C protease can enter the host cell nucleus and
specifically cleaved during EV71 infection and the cleavage site lies at or within the
infection at different MOIs. Wild-type EV71 was rescued from infectious cDNA clone p
2 and cells were harvested at 24 h.p.i. β-Actin was used as the internal control. B Wes
infected with EV71 (MOI ¼ 0.5). Cells (A, B) were detected using histone H3 and h
histone H3K4 (H3K4me2) and histone H3 C-terminal. RD cells were infected with EV
H3K4 (H3K4me2) polyclonal antibody and histone H3 C-terminal antibody at 24 h.p
H3 C terminal respectively. RD cells were infected with EV71 (MOI ¼ 0.5) or moc
Isolated histone samples were detected using combination of histone H3 PTM-speci
responsible for H3 N-tail cleavage. E Western blotting for the detection of EV71 3C pr
h.p.i. GAPDH and Lamin B1 were used as cytoplasmic and nuclear protein controls, re
EV71-infected RD cells at 8, 24, and 36 h.p.i. The nuclei of RD cells were stained
immunofluorescence signals. DIC represents bright vision. All immunofluorescence im
blotting for distribution analysis of EV71 3C protease and its different domains in RD
pRK-3C, pRK-3 � NLS-3C, pRK-3 � NLS-3C-C147S, and infected with EV71 (MOI ¼
fraction isolation. H The other half of the cells in G were used to detect histone H3
recombinant EV71 3C cleaves histone H3 in vitro. 0.5 μg histone samples from RD
mutant 3C-C147S (J) proteins ranging from 1, 2, 4, and 8 μg (lanes 3 to 6). After inc
terminal antibody in a Western blot assay. K Histone samples (0.5 μg) were incuba
detected using acetyl-histone H3K18 (H3K18ac) polycolonal antibody, trimethyl-hist
used as a negative control for excluding the effects of the protein tag. Experiment d
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Thereafter, we cloned the 3C protein and the catalytic activity mutant
3C-C147S (Shih et al., 2004) into mammalian cell expression vectors, and
added a 3� KKKRK NLS tag to its N-terminus to enable it to be expressed
in nuclei. Primers used were shown in Supplementary Table S1. RD cells
were transfected with these plasmids, and nuclear/cytoplasmic fraction
extracts were prepared from transfected cells after 48 h and examined for
3C proteins using immunoblotting with an antibody against EV71 3C. As
shown in Fig. 1G and 3 � NLS-3C and 3 � NLS-3C-C147S were all
detected in the nuclear fraction, similar to that in the EV71 infected
sample. We also examined whether histone H3 was cleaved using the
C-terminal antibody of histone H3. We found that the clipped form of H3
could be detected in 3�NLS-3C and virus infected samples, but not in 3C
without 3 � NLS or 3 � NLS-3C-C147S samples (Fig. 1H). The results
demonstrated that 3C protease was able to localize to the nucleus and
was responsible for H3 N-tail cleavage during EV71 infection.

To further validate our findings of 3C as a histone H3 protease, we
performed an in vitro H3 cleavage assay. First, the catalytic activities of
purified recombinant EV71 wild-type 3C or mutant 3C-C147S was veri-
fied by incubation with histones extracted from RD cells at 37 �C for 1 h.
The samples were then used to examine H3 cleavage using immuno-
blotting with the C-terminal antibody of histone H3. The clipped form of
histone H3 was detected only in the samples incubated with wild-type 3C
(Fig. 1I), but not in the catalytic activities of mutant 3C-C147S (Fig. 1J),
which were consistent with our previous results (Fig. 1H). Upon immu-
noblotting using histone PTM antibodies such as H3K18ac and
H3K27me3, we determined that the H3 cleavage site was between K18
and K27, similar to that in virus-infected cells (Fig. 1K).

In this study, we showed that histone H3 is proteolytically cleaved at
its N-terminus during EV71 infection. Furthermore, we identified viral
protease 3C as a protease responsible for the proteolytic processing of the
N-terminal H3 tail. Chromatin undergoes structural and chemical
changes during viral infection, which subsequently leads to differences in
cellular function by altering the patterns of gene expression. The results
indicate that histone proteolysis, brought about by EV71-encoded 3C
protease, has a global impact on the transcription and regulation of host
and viral genes.
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cleave histone H3 N tails upon viral infection. A-D The N-terminal tail of H3 is
K18–K27 region. A Western blotting was used to detect histone H3 after EV71
EV-HeN09. The RD cells were infected with wild-type EV71 at MOIs from 0.05 to
tern blot analysis of histone H3 and H4 at various h.p.i. from 3 to 36 in RD cells
istone H4 specific antibodies. C Western blotting for the detection of dimethyl-
71 at different MOI from 0.05 to 2. Cells were detected using dimethyl-histone
.i. D Western blot analysis of H3K4me2, H3K14me2, H3K18ac, H3K27me3 and
k-infected, and cells were collected for histone purification at 24 and 36 h.p.i.
fic antibodies. E-H The viral 3C protease can enter the cellular nucleus and be
otease in the cytoplasmic and nuclear fractions of EV71-infected RD cells at 3–36
spectively. F Immunofluorescence staining of EV71 3C protease (green color) in
with DAPI dye (blue color), and the merged images show the 3C and nuclei
ages were analyzed using confocal microscopy. Scale bar, 20 μm. G-H Western

cells infected with EV71 (MOI ¼ 0.5). G RD cells were transfected with plasmids
0.5). After 36 h, half of the cells were collected for nuclear and cytoplasmic
using a histone H3 C-terminal antibody. I–K Western blot analysis shows that
cells were treated with various quantities of recombinant wild-type 3C (I) and
ubation at 37 �C for 1 h in vitro, samples were detected using the Histone H3 C-
ted with 2 μg recombinant wild-type 3C and mutant 3C-C147S. Samples were
one H3K27 (H3K27me3) polyclonal antibody in a Western blot assay. MBP was
etails were described in Supplementary materials.
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